A MULTIPLICATIVE SCHWARZ ALGORITHM FOR THE NONLINEAR COMPLEMENTARITY PROBLEM WITH AN M-FUNCTION
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملA generalized proximal point algorithm for the nonlinear complementarity problem
We consider a generalized proximal point method (GPPA) for solving the nonlinear complementarity problem with monotone operators in R ' \ lt differs from the classical proximal point method discussed by Rockafellar for the problem offinding zeroes of monotone operators in the use of generalized distances, called (p-divergences, instead of the Euclidean one. These distances play not only a regul...
متن کاملA Positive Algorithm for the Nonlinear Complementarity Problem
In this paper, the authors describe and establish the convergence of a new iterative method for solving the (nonmonotone) nonlinear complementarity problem (NCP). The method utilizes ideas from two distinct approaches for solving this problem and combines them into one unified framework. One of these is the infeasible-interior-point approach that computes an approximate solution to the NCP by s...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2010
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972710000389